Как повысить КПД электродвигателя: выбираем решение
В настоящее время электромеханические преобразователи считаются одними из самых эффективных технических решений, однако в процессе их эксплуатации возникает ряд проблем. К ним относятся потери энергии по различным причинам - магнитные, электрические и механические – которые сопровождаются тепловым излучением, а также шумом и вибрацией. Эти процессы являются результатом трения элементов, перемагничивания в магнитном поле сердечника якоря электродвигателя, а также скачков нагрузок. Но возможно ли сократить так называемые "утечки" и повысить КПД? Об этом мы поговорим в данной статье.
Повышение КПД асинхронных двигателей становится все более актуальной задачей в современной электротехнике. Согласно определению, электрические машины бывают синхронными и асинхронными. Синхронные машины характеризуются одинаковой частотой вращения ротора и магнитного поля. В то время как у асинхронных машин магнитное поле вращается с более высокой скоростью, чем ротор. Большинство (около 90%) двигателей в мире являются асинхронными, в связи с их простотой в изготовлении, надежностью, доступной ценой и низкими эксплуатационными затратами. Кроме того, КПД асинхронных двигателей значительно выше, чем у синхронных.
Однако у асинхронных двигателей также имеются некоторые недостатки. Высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой - все эти факторы приводят к лавинообразному росту силы тока и избыточным механическим нагрузкам при запуске, а также снижению КПД в периоды пониженной нагрузки. К тому же, точная регулировка скорости работы прибора также не является возможной.
Существуют различные подходы к повышению КПД асинхронных двигателей. Некоторые из них включают улучшение обмотки на статоре, использование систем управления частотой и высотой напряжения, а также измельчения материала магнитного ядра внутри машины. Кроме того, применение технологии вариации скорости постоянного тока с использованием системы бесконтактной передачи энергии является возможным способом повышения КПД асинхронных двигателей.
Таким образом, повышение КПД асинхронных двигателей - важная задача для современной электротехники. Существуют различные подходы к решению этой задачи, каждый из которых имеет свои преимущества и ограничения.
Возможности оптимизаторов-контроллеров применения оборудования в промышленности, сельском хозяйстве и сфере жилищно-коммунального хозяйства переносят эффективность дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования на новый уровень. Они предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах и обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, для чего обычные устройства плавного пуска не подходят.
В статье рассказывается о том, как контроллеры-оптимизаторы могут помочь повысить КПД оборудования за более доступную цену, по сравнению с преобразователями. Например, по цене примерно от 90 до 140 тысяч рублей, можно приобрести устройство мощностью 90 кВт от отечественного производителя.
Достоинства и недостатки контроллеров-оптимизаторов
Контроллеры-оптимизаторы могут быстро реагировать на изменение напряжения, что снижает расходы электроэнергии на 30–40%, сокращает влияние реактивной нагрузки на сеть, повышает КПД привода, позволяет сократить расходы на конденсаторные компенсирующие устройства, а также продлевает срок службы оборудования и повышает экологичность производства. Отличительной особенностью контроллеров также является более доступная цена по сравнению с преобразователями частоты.
Однако стоит отметить, что контроллеры-оптимизаторы имеют ограничение в использовании в тех случаях, когда необходимо изменять скорость вращения электродвигателя. Таким образом, при выборе контроллера следует учитывать этот момент и выбирать оптимальный вариант, учитывая конкретную ситуацию и потребности.
Как правильно выбрать устройство, способное повысить КПД оборудования? Дело в том, что выбор определенного электропривода зависит от того, как он работает. Нужно понимать, что если необходимо изменять скорость привода, то здесь единственно верным выбором будет преобразователь частоты. Но если скорость вращения двигателя не изменяется или это не является целями, то более доступным решением будет использовать контроллеры-оптимизаторы. Такие устройства обойдутся значительно дешевле, чем преобразователи частоты.
На заметку: как повысить КПД электродвигателя
Если вы занимаетесь эксплуатацией электроприводов, то знаете, что их эффективность напрямую зависит от ряда факторов: степени загрузки по отношению к номинальной, конструкции, модели, степени износа и отклонения напряжения в сети от номинального. Кроме того, КПД электродвигателя может заметно снизиться после перемотки.
Чтобы оптимизировать работу электропривода, необходимо обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту подаваемого тока. Для этого применяется специальное оборудование, позволяющее повысить КПД электродвигателя. Однако не всегда возможно или целесообразно реализовать все перечисленные меры.
Наиболее востребованные приборы, которые позволяют улучшить работу электродвигателя, – это частотные преобразователи и устройства плавного пуска. Первые изменяют скорость вращения двигателя путем изменения частоты питающего напряжения, а вторые ограничивают скорость нарастания пускового тока и его максимальное значение.
В данной статье мы рассмотрим современные решения для повышения КПД электродвигателей с точки зрения их эффективности работы и экономической целесообразности.
Повысить эффективность работы электродвигателя можно с помощью частотных преобразователей, которые изменяют однофазное или трехфазное напряжение с частотой 50 Гц на напряжение необходимой частоты (обычно в диапазоне от 1 Гц до 300-400 Гц, а иногда бывает и до 3000 Гц) и амплитуды. Частотные преобразователи подходят для использования в асинхронных двигателях.
Одним из главных инструментов управления скоростью электродвигателей в современной промышленности является преобразователь частоты - также известный как «частотник». Принцип работы «частотника» заключается в том, чтобы изменять частоту входного электрического сигнала, поступающего на электродвигатель, что позволяет регулировать скорость вращения вала.
Обычно «частотник»управляет работой электронных ключей, а также контролирует оборудование при помощи электронных цепей. Он включает также схемы, работающие в режиме ключей и открывающие тиристоры или транзисторы. В зависимости от устройства и принципов работы, существуют два класса «частотников».
Первый класс использует непосредственную связь и представляет собой выпрямители. Они обеспечивают низкочастотное напряжение, которое позволяет регулировать скорость вращения привода в определенных пределах. Этот тип устройств не лучшим образом подходит для управления мощным оборудованием, регулирующим множество технологических параметров.
Второй тип устройств использует промежуточное звено постоянного тока. В таких аппаратах производится двойное преобразование энергии, чтобы обеспечить выходное напряжение с необходимой амплитудой и частотой. Это дает возможность применять их для управления электродвигателями с широким диапазоном мощности и скоростью вращения. Однако, несмотря на их многофункциональность, такие преобразователи частоты имеют несколько более низкий КПД, чем выпрямители.
Несмотря на это, устройства второго типа являются наиболее популярными среди «частотников», которые обеспечивают плавное регулирование скорости вращения двигателей с помощью электронной технологии.
Статья рассказывает о различных функциональных возможностях частотных преобразователей и их соответствии целям использования.
Использование преобразователей с невысокой перегрузочной способностью и U/f-управлением чаще всего применяется для электроприводов насосов и вентиляторов, где необходимо увеличить момент двигателя на низких частотах.
Более совершенные устройства с векторным управлением регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Они наиболее эффективны при использовании в конвейерном, прокатном, упаковочном, подъемном оборудования и прочих.
При необходимости контролируемого торможения двигателя используется функция замедления, которая может различаться в зависимости от его интенсивности. В таких случаях можно применять преобразователи с встроенным внешним блоком торможения и тормозным резистором или рекуперативным блоком торможения. Режим динамического торможения позволяет переводить механическую энергию в электрическую и либо рассеивать ее в тепло на сопротивлении тормозного резистора, либо возвращать энергию в сеть посредством рекуперации. Это решение актуально для станкового и конвейерного оборудования.
Частотные преобразователи с обратной связью обеспечивают более точное поддержание постоянной скорости вращения при переменной нагрузке, что повышает качество технологического процесса в замкнутых системах. Такие устройства широко используются в робототехнике, дерево- и металлообработке, а также в системах высокоточного позиционирования.
Запись о стоимости «частотников»
В настоящее время, по словам финансистов, стоимость «частотников» нестабильна: за последние полтора года цены значительно увеличились. Это обусловлено не только колебаниями валютного курса, но и другими факторами. Например, частотные преобразователи производства России и зарубежных стран мощностью 90 кВт стояли примерно от 200 до 700 тысяч рублей для покупателей в 2021 году.
Достоинства и недостатки преобразователя частоты для асинхронного двигателя, описанного выше, имеют свои преимущества и недостатки. Одним из главных достоинств является снижение расхода электроэнергии, также преобразователь обеспечивает плавный запуск привода, высокую точность регулировки и увеличивает пусковой момент. Благодаря этому, преобразователь стабилизирует скорость вращения при переменной нагрузке, и в совокупности все указанные преимущества позволяют повысить коэффициент полезного действия машины.
Но к недостаткам преобразователя можно отнести высокую стоимость, что может отпугнуть потенциальных покупателей. Также его использование может вызывать создание электромагнитных помех в процессе работы.
Таким образом, при использовании преобразователя частоты необходимо учитывать и достоинства, и недостатки, и сделать окончательный выбор в зависимости от конкретных условий эксплуатации и требований.
Контроллеры-оптимизаторы: устройства для плавного пуска
Для обеспечения плавного запуска, разгона и остановки электродвигателя используются устройства плавного пуска (УПП). Они способны ограничивать скорость увеличения пускового тока в течение определенного времени и тем самым предотвращать повреждение оборудования.
Однако традиционные устройства плавного пуска имеют свой недостаток – они не улучшают КПД оборудования. К тому же они применяются только для управления приводами с невысокой нагрузкой на валу.
Но на сегодняшний день существуют контроллеры-оптимизаторы, которые позволяют повысить энергоэффективность двигателей. Они могут согласовывать крутящий момент с моментом нагрузки и, как следствие, снижать потребление электроэнергии на минимальных нагрузках на 30–40%. Эти устройства предназначены для приводов, не требующих изменения числа оборотов двигателя.
Например, чтобы снизить энергопотребление эскалатора при помощи преобразователя частоты, потребовалось бы уменьшить его скорость, но это невозможно, потому что тогда подъем пассажиров займет больше времени. Однако контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.
Контроллеры-оптимизаторы – это устройства, которые выполняют функцию регуляторов напряжения для питания электродвигателей. Они предоставляют контроль над фазами напряжения и тока, обеспечивают полное управление приводом на всех этапах работы и защищают его от повышенного и пониженного напряжения, перегрузки, обрыва или нарушения чередования фазы и т.д.
Контроллеры-оптимизаторы также согласовывают значение крутящего момента, развиваемого электродвигателем, с его нагрузкой на валу, путем изменения напряжения для питания двигателя. В процессе регулирования крутящего момента скорость вращения ротора остается прежней, а коэффициент мощности повышается. Это оборудование является функционально законченным и не требует подключения дополнительных устройств.
В период работы привода в условиях динамически изменяющихся нагрузок контроллер обеспечивает прекращение отбора мощности из сети электропитания в те моменты, когда полупроводниковые переходы тиристоров (управляемых диодов) задерживают электрический ток. Размыкание тиристоров происходит периодически при поступлении управляющих сигналов, период, задержка которых определяется относительным значением загрузки привода.
Важно помнить, что скорость реакции контроллера-оптимизатора на изменение нагрузки составляет сотые доли секунды.
Фото: freepik.com